48 research outputs found

    Multi-Functional Distributed Generation Unit for Power Quality Enhancement

    Get PDF

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Modeling and Parameter Design of Voltage-Controlled Inverters Based on Discrete Control

    No full text
    Grid-connected inverters are widely used to interface renewable energy and energy storage resources into the grid. Voltage-controlled inverters have attracted more and more attention due to their grid-friendly characteristics. The mathematical models of the voltage and current loops are developed in this paper, considering especially the discrete control delay caused by calculation and modulation. In order to suppress the resonance peak in the current loop, the frequency characteristics of the current loop are analyzed in detail. The optimum design flow of the current controller and voltage controller parameters are presented based on numerical analysis, and the stability, dynamic performance and the resonance peak suppression in voltage loop are also considered. Finally, the validity of the mathematical model and the effectiveness of the controller parameters design method are verified by simulation and experimental results

    Effect of Combined Application of Boron and Molybdenum Microelement Fertilizer on Cowpea Yield and Quality

    No full text
    Through field plot experiment, we research the influencing factors of cowpea yield and quality after applying boron and molybdenum microelement fertilizer. Results show that the application of boron and molybdenum microelement fertilizer can significantly increase the yield and improve the quality of cowpea. Compared with the control, yield per mu increases by 5.08%-18.86%; N content increases by 4.27%-11.28%; P content increases by 2.13%-13.57%; K content increases by 2.00%-18.48%; crude protein increases by 4.16%-19.94%; vitamin C increases by 2.71%-11.79%; nitrate content decreases by 5%-15%. Besides, it is better to combine boron with molybdenum than to use each of them separately

    Longer Time-Scale Variability of Atmospheric Vertical Motion over the Tibetan Plateau and North Pacific and the Climate in East Asia

    No full text
    The vertical motion of air is closely related to the amount of precipitation that falls in a particular region. The Tibetan Plateau and the North Pacific are important determinants of the East Asian climate. We use climate diagnosis and statistical analysis to study the vertical motion of the air over the North Pacific and Tibetan Plateau and the relationship between the vertical motion of air over them and the climate in East Asia. Here we show that there is a downward movement of air over the Tibetan Plateau during the winter, with a maximum velocity of downward movement at 500 hPa, whereas there is an upward movement of air with a maximum velocity of upward movement at 600 hPa during the summer. Precipitation in East Asia has a significant negative correlation (The correlation coefficient exceeds −0.463 and confidence level is greater than 99%) with the vertical motion of air over the Tibetan Plateau and the North Pacific during both the winter and summer. There is also a negative correlation of precipitation in the region south of the Yangtze River with the vertical motion of air over the Tibetan Plateau in winter, whereas the area of negative correlation to the vertical motion of air over the North Pacific in winter is located to the east of the Tibetan Plateau and the Yangtze–Huaihe river basin. The research results provide a climatic framework for the vertical motion of air over both the Tibetan Plateau and the North Pacific

    Design, Evaluation and Implementation of an Islanding Detection Method for a Micro-grid

    No full text
    Correct and fast detection of a micro-grid (MG) islanding is essential to the MG since operation, control, and protection of the MG depend on its operating mode i.e., an interconnected mode or islanding mode. This study describes the design, evaluation and implementation of an islanding detection method for an MG, which includes a natural gas-fired generator, a doubly fed induction generator type wind generator, a photovoltaic generator, and some associated local loads. The proposed method is based on the instantaneous active and reactive powers at the point of common coupling (PCC) of the MG. During the islanding mode, the instantaneous active and reactive powers at the PCC are constants, which depend on the voltage of the PCC and the impedance of the dedicated line. The performance of the proposed method is verified under various scenarios including islanding conditions for the different outputs of the MG, and fault conditions by varying the position, type, inception angle and resistance of the fault, using the PSCAD/EMTDC simulator. This paper also concludes by implementing proposed method into a TMS320C6701 digital signal processor. The results indicate that the proposed method successfully detects islanding for the MG in islanding conditions, and remains stable in fault conditions

    Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance

    No full text
    Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission

    Diverse Begomoviruses Evolutionarily Hijack Plant Terpenoid-Based Defense to Promote Whitefly Performance

    No full text
    Arthropod-borne pathogens and parasites are major threats to human health and global agriculture. They may directly or indirectly manipulate behaviors of arthropod vector for rapid transmission between hosts. The largest genus of plant viruses, Begomovirus, is transmitted exclusively by whitefly (Bemisia tabaci), a complex of at least 34 morphologically indistinguishable species. We have previously shown that plants infected with the tomato yellowleaf curl China virus (TYLCCNV) and its associated betasatellite (TYLCCNB) attract their whitefly vectors by subverting plant MYC2-regulated terpenoid biosynthesis, therefore forming an indirect mutualism between virus and vector via plant. However, the evolutionary mechanism of interactions between begomoviruses and their whitefly vectors is still poorly understood. Here we present evidence to suggest that indirect mutualism may happen over a millennium ago and at present extensively prevails. Detailed bioinformatics and functional analysis identified the serine-33 as an evolutionary conserved phosphorylation site in 105 of 119 Betasatellite species-encoded βC1 proteins, which are responsible for suppressing plant terpenoid-based defense by interfering with MYC2 dimerization and are essential to promote whitefly performance. The substitution of serine-33 of βC1 proteins with either aspartate (phosphorylation mimic mutants) or cysteine, the amino acid in the non-functional sβC1 encoded by Siegesbeckia yellow vein betasatellite SiYVB) impaired the ability of βC1 functions on suppression of MYC2 dimerization, whitefly attraction and fitness. Moreover the gain of function mutation of cysteine-31 to serine in sβC1 protein of SiYVB restored these functions of βC1 protein. Thus, the dynamic phosphorylation of serine-33 in βC1 proteins helps the virus to evade host defense against insect vectors with an evolutionarily conserved manner. Our data provide a mechanistic explanation of how arboviruses evolutionarily modulate host defenses for rapid transmission
    corecore